摘要

为了研究网络表示学习在社交网络中链路预测方面的应用,提出了一种基于骨干度与网络编码的链路预测模型(BDLINE)。在网络表示学习算法LINE的基础上融入骨干度算法,通过给一阶相似度和二阶相似度中增添骨干权重,将网络编码到多维向量空间中,调试到最优参数。实验采用2个真实数据的数据集,分别在不同的算法模型上进行多次实验。实验结果表明:在链路预测方面,BDLINE均比其他网络表示学习算法的性能有所提升,AUC评测值更高,预测效果表现得更好。因此,所提出的方法可以方便地提取网络特征信息,更好地处理社交网络在链路预测中的随机性,对社交网络中预测网络节点的关联性和有效性具有一定的参考。