摘要

在认知电子战中,对多功能雷达工作模式的识别是至关重要的一个环节.在实际中,由于多功能雷达工作模式的多样性、隐藏性,能侦收到的不同工作模式脉冲样本数可能较少.因此,如何在少量样本条件下,准确识别多功能雷达的工作模式,对雷达对抗具有重要意义.针对此问题,本文提出了一种将模式先验知识与原型网络相融合的识别方法 .该方法的核心是将雷达工作模式先验知识进行编码映射,并融入原型网络训练,实现知识在网络模型中的内嵌,以在少量训练样本条件下获得更好的识别性能.仿真结果表明,融入了先验知识的原型网络与不使用先验知识的原型网络、SVM分类器相比,识别准确率分别提升了2.9%和10.5%.

全文