摘要

机器人语音识别需要满足混合噪声与非特定人等复杂场景的使用需求,现有方法难以达到全场景的准确识别。为此提出了融合递归求逆滤波的混合语音识别方法。方法根据机器人语音识别模型,分别对语音信号的预处理,特征提取,以及匹配识别三个阶段做了相应优化。在预处理阶段,设计了递归求逆算法,用于补偿原始语音中的小特征信号,同时采用加权向量,在递推过程中增强原始语音信号。在特征提取阶段,针对卷积噪声,边缘效应,以及基音干扰,设计了多次滤波器,用以避免语音特征提取时的各种干扰。最后的匹配识别阶段,利用提取的特征训练得到模板库,通过欧氏距离递推得到相似度,并根据阈值约束完成匹配识别。仿真结果表明,融合递归求逆滤波方法显著提高了混合语音信号的识别率与抗噪性能,能够更好的满足机器人复杂场景下的应用需求。