摘要
基于高光谱图像技术和机器学习算法,提出了一种对重金属污染蛤仔进行快速无损检测的新方法。该方法分为3步:采集蛤仔样本高光谱图像并使用3种方法进行预处理;采用线性判别分析(linear discriminant analysis, LDA)对高光谱数据降维;应用支持向量机(support vector machine, SVM)实现重金属污染蛤仔分类检测。对于以单类重金属污染样本和健康样本为样本集的二分类检测,LDA-SVM模型检测重金属污染样本的准确率可达到99.33%以上。对于以Cd、Cu、Pb、Zn 4类重金属污染样本和健康样本为样本集的五分类检测,检测准确率可达到93.33%。结果表明:LDA-SVM模型能够实现对蛤仔重金属污染快速无损检测,且该模型性能基本不受预处理方法和模型参数的影响,鲁棒性强。
- 单位