为解决建筑电气系统故障诊断和监测中高度依赖人工巡查和检测,自动化程度低下导致故障诊断滞后的问题,有必要研究以智能化的监测方法或手段诊断出故障位置,达到高效和经济的目的。本文以实际工程案例为依托,在研究建筑电气故障事故的监测基础上,以此为机器学习样本,提出基于BP神经网络法和ELM机器极限学习机法的建筑电气故障诊断方法。研究结果可为新建建筑或者老旧小区改造的建筑电气故障诊断和监测提供方法和案例。