摘要

为了解决难以建立精确数学模型或者真实评估实验成本高昂的多目标优化问题,提出了一种基于径向空间划分的昂贵多目标进化算法.首先算法使用高斯回归作为代理模型逼近目标函数;然后将目标空间的个体投影到径向空间,结合目标空间和径向空间信息保留对种群贡献更高的个体;之后由径向空间中个体的位置分布决定下一步应该选择哪些个体进行真实评估;最后,采用一种双档案管理策略维护代理模型的质量.数值实验和现实问题上的结果表明,与5种先进算法相比,该算法在解决昂贵多目标优化问题时能够提供更高质量的解.

全文