考虑到l1范数度量比l2范数平方度量更鲁棒,基于l1度量提出了一种更鲁棒的半监督图聚类模型,针对该模型中非光滑目标函数不易优化的问题,利用Majorization-Minimization框架提出了一种新的求解算法并证明了其收敛性.实验结果表明,在监督信息有噪声或错误时,所提出的模型能提高半监督聚类的鲁棒性和有效性.