摘要

交替方向乘子法求解两分块优化的研究已逐渐成熟和完善,但对于非凸多分块优化的研究相对较少.本文提出带线性约束的非凸多分块优化的部分对称正则化交替方向乘子法.首先,在适当的假设条件下,包括部分对称乘子修正中参数的估值区域,证明了算法的全局收敛性.其次,当增广拉格朗日函数满足Kurdyka-Lojasiewicz (KL)性质时,证明了算法的强收敛性.当KL性质关联函数具有特殊结构时,保证了算法的次线性和线性收敛率.最后,对算法进行了初步数值试验,结果表明算法的数值有效性.