摘要

针对传统轴承故障诊断算法精度低、易受噪声干扰等问题,提出一种经验模态分解与卷积神经网络相结合的诊断方法。利用光纤布拉格光栅(FBG)获取轴承的振动信号,再由经验模态分解将信号分解为多个本征模态函数(IMF)分量,并提取有效信号,利用IMF分量的结构特性将IMF分量组合成矩阵,输入至改进的卷积神经网络中进行故障分类识别。实验结果表明,所提方法能有效识别正常轴承、故障轴承及复合故障轴承,其识别准确率大于91%。