摘要
事件检测属于自然语言处理的核心任务及难点之一,使用长短时记忆网络(LSTM)和卷积神经网络(CNN)进行的相关研究越来越广泛,但面对篇章级别的事件文本时,参数量庞大的LSTM与语义缺失明显的CNN导致模型检测准确性和收敛性均欠佳。该文结合迭代空洞卷积神经网络和高速神经网络,提出基于混合特征的高速迭代空洞卷积神经网络,力图优化深层模型训练中常见的梯度消失与爆炸现象,提取性能更优的篇章级文本特征。实验结果表明,该方法与当下主流的LSTM和CNN模型相比,矿山灾害事件检测效果更为理想,收敛性及训练效率也表现更优。
-
单位中国矿业大学(北京); 江苏建筑职业技术学院; 中国矿业大学