摘要

异质信息网络(Heterogeneous Information Network, HIN)嵌入将复杂的异质信息映射到低维稠密的向量空间,有利于网络数据的计算和存储。现有的基于多视图的HIN嵌入方法考虑了节点之间的多种语义关系,但忽略了视图的不完整性。大多数视图存在数据缺失,直接融合多个不完整的视图会导致嵌入效果不佳。为此,文中提出了一种融合不完整多视图的HIN嵌入方法(Incomplete Multi-view Fusion Based HIN Embedding, IMHE)。IMHE的关键思想是聚合其他视图的邻居以重建不完整的视图。由于不同的单视图描述的是同一个网络,因此其他视图中的邻居可以一定程度上恢复不完整视图的结构信息。IMHE首先在不同视图中生成节点序列,并利用多头注意力方法学习单视图嵌入。对于每个不完整视图,IMHE在其他视图中找到缺失节点的k阶邻居,然后将不完整视图中邻居的单视图嵌入聚合在一起,为缺失节点生成新的嵌入。最后使用多视图典型相关性分析方法获得节点的统一嵌入,同时提取多个视图的隐藏语义关系。在3个真实数据集上的实验结果表明,相比现有研究,该方法的嵌入性能有显著提升。