摘要
针对传统变压器绕组机械故障诊断方法中,仅考虑绕组单一方向振动信号且特征参数提取复杂、识别准确率低的问题。本文提出了一种基于两轴振动和多传感器融合的变压器绕组机械故障诊断方法。首先从绕组轴向、辐向振动相关性角度提出两轴振动关系图形作为特征图像;然后采用轻量级卷积神经网络MobileNet V2对不同传感器获得的图像数据进行训练;最后利用D-S证据理论对多维信息源识别结果进行融合,并做出最终决策。实验结果表明所提方法故障诊断准确率可达99.4%,与传统故障诊断方法相比,简化特征提取步骤,诊断准确率提高了6.2%以上,为变压器绕组机械故障诊断提供一种可行方案。
- 单位