摘要
无蜂窝大规模多入多出(MIMO)网络中分布式接入点(AP)同时服务多个用户,可以实现较大区域内虚拟MIMO的大容量传输;而无人机辅助通信能够为该目标区域热点或边缘用户提供覆盖增强。为了降低反馈链路负载,并有效提升无人机辅助通信的频谱利用率,该文研究了基于AP功率分配、无人机服务区选择和接入用户选择的联合调度;首先将AP功率分配和无人机服务区选择问题联合建模为双动作马尔可夫决策过程(DAMDP),提出了基于Q-learning和卷积神经网络(CNN)的深度强化学习(DRL)算法;然后将用户调度构造为一个0-1优化问题,并分解成子问题来求解。仿真结果表明,该文提出的基于DRL的资源调度方案与现有方案相比,可以有效提升无蜂窝大规模MIMO网络中频谱利用率。
- 单位