摘要

针对入侵检测系统因采用的网络攻击样本具有不平衡性而导致检测结果出现较大偏差的问题,提出一种将改进后的深度卷积生成对抗网络(deep convolution generation adversarial network, DCGAN)与深度神经网络(deep neural network, DNN)相结合的入侵检测模型(DCGAN-DNN),深度卷积生成对抗网络能够通过学习已知攻击样本数据的内在特征分布生成新的攻击样本,并对深度卷积生成对抗网络中生成网络所用的线性整流(rectified linear unit, ReLU)激活函数作出改进,改善了均值偏移和神经元坏死的问题,提升了训练稳定性。使用CIC-IDS-2017数据集作为实验样本对模型进行评估,与传统的过采样方法相比DCGAN-DNN入侵检测模型对于未知攻击和少数攻击类型具有较高检测率。