摘要
为高效地发现满足用户需求的Web服务,针对Web服务的描述文本较短、缺乏足够有效信息的问题,提出一种基于Word2Vec和LDA主题模型的Web服务聚类方法。该方法首先将Wikipedia语料库作为扩充源,使用word2vec对Web服务描述文档内容进行扩充,再将扩充后的描述文档利用主题模型进行特征建模,将短文本主题建模转化为长文本主题建模,更准确地实现服务内容主题表达,最后根据文档的主题分布矩阵寻找相似的服务并完成聚类,使用从ProgrammableWeb收集的真实数据进行实验。研究结果表明:本文方法与TFIDF-K,LDA,WT-LDA和LDA-K方法相比,F分别提高419.74%,20.11%,15.60%和27.80%,利用扩充后的Web服务的描述文档进行聚类的方法能够有效提高Web服务聚类的效果。
- 单位