摘要
针对抽油机系统效率低,能耗大的问题,提出一种基于数据挖掘的抽油机建模及节能优化方法。抽油机的工艺参数理想与否是决定抽油机效率的一个重要因素,而抽油机模型的有效性又是优化工艺参数的关键。抽油机工作过程是一个复杂非线性系统,很难用准确的数学模型描述,广义回归神经网络(generalized regression neural network,GRNN)非线性映射能力强、容错性高,适于解决非线性系统建模问题。为此,提出利用GRNN确定工艺参数与增产节能指标的映射关系,建立抽油机模型;实验结果表明模型的拟合度较好,建模效果良好。紧接着,运用具有智能特性的Pareto向量评价微粒群算法(vector e...
- 单位