摘要

支持向量机(Support Vector Machine, SVM)是建立车标识别模型的主要智能方法之一。考虑SVM存在计算复杂度高和无法实现增量学习等问题,提出一种基于孪生支持向量机(Twin SVM, TSVM)增量学习算法,并结合HOG特征设计一种车标识别系统。首先利用特征检测结合仿射变换技术,实现车标的精准定位;然后提取车标图像HOG特征,并通过对矩阵的逆运算进行分解和重组,实现TSVM增量学习。最后利用车标数据集训练分类模型,实现对车标的分类。实验结果表明,文中提出的算法在车标数据集上实现了91.77%的识别率,优于其他几种识别算法,证明了文中提出算法的有效性。

  • 单位
    烟台汽车工程职业学院

全文