摘要

采用灰色关联分析对影响拉延筋阻力的因子进行分析,获得主要的影响因子。利用拉丁超立方试验设计方法对主要因子进行取样,利用DYNAFORM软件对方盒件成形进行仿真,得到样本数据。以成形件中的减薄、增厚和主应变为输入,以拉延筋几何参数为输出,建立拉延筋参数的反求模型。利用遗传算法优化反向传播(Back propagation,BP)网络权值,通过与单纯使用BP进行映射得出的几何参数预测值进行比较,该模型的精度得到很大提高,表明基于遗传算法(Genetic algorithm,GA)优化的BP神经网络的模型能极大提高预测能力。基于GA-BP模型,以拉延筋几何参数为输入,增厚为输出目标,利用训练好的优化...