摘要
深度学习模型在图像分类领域的能力已经超越了人类,但不幸的是,研究发现深度学习模型在对抗样本面前非常脆弱,这给它在安全敏感的系统中的应用带来了巨大挑战。图像分类领域对抗样本的研究工作被梳理和总结,以期为进一步地研究该领域建立基本的知识体系,介绍了对抗样本的形式化定义和相关术语,介绍了对抗样本的攻击和防御方法,特别是新兴的可验证鲁棒性的防御,并且讨论了对抗样本存在可能的原因。为了强调在现实世界中对抗攻击的可能性,回顾了相关的工作。在梳理和总结文献的基础上,分析了对抗样本的总体发展趋势和存在的挑战以及未来的研究展望。
- 单位