在高维小样本分类学习任务中,数据存在着高维性及类别不平衡问题.基于此,构建利用一致性分析的高维类别不平衡数据特征选择模型.首先通过定义融合类别信息来定义样本在特征空间的一致性,其次设计基于特征重要度的前向特征选择算法,最后选取十二个数据集与七个算法进行对比分析,实验结果表明,该算法能显著提高小类预测精度.