摘要
高光谱遥感影像数据量大、波段数多,容易导致"维数灾难"。传统流形学习方法一般仅考虑其光谱特征,忽略了空间信息。为此提出一种非监督的基于加权空-谱联合保持嵌入(WSCPE)的维数约简算法。首先采用加权均值滤波(WMF)方法对高光谱影像进行滤波,以消除噪点和背景点的干扰。然后根据遥感影像地物分布的空间一致性,通过采用加权空-谱联合距离(WSCD)来融合像素点的光谱信息和空间信息,有效选取各像素点的空-谱近邻,并根据像素点与其空-谱近邻点之间的坐标距离来有区别的利用其近邻点进行流形重构,提取低维鉴别特征进行地物分类。在PaviaU和Indian Pines数据集上的分类结果表明,总体分类精度分别达到了98.89%和95.47%。该方法在反映影像内部流形结构的同时,有效融合了影像的空间-光谱信息,故能提高影像特征的鉴别性,并提升分类性能。
- 单位