摘要
针对低光照增强任务缺乏参考图像及现有算法存在的色彩失真、纹理丢失、细节模糊、真值图像获取难等问题,本文提出了一种基于Retinex理论与注意力机制的多尺度加权特征低光照图像增强算法。该算法通过基于Unet架构的特征提取模块对低光照图像进行多尺度的特征提取,生成高维度的多尺度特征图;建立注意力机制模块凸显对增强图像有利的不同尺度的特征信息,得到加权的高维特征图;最后反射估计模块中利用Retinex理论建立网络模型,通过高维特征图生成最终的增强图像。设计了一个端到端的网络架构并利用一组自正则损失函数对网络模型进行约束,摆脱了参考图像的约束,实现了无监督学习。最终实验结果表明本文算法在增强图像的对比度与清晰度的同时维持了较高的图像细节与纹理,具有良好的视觉效果,能够有效增强低光照图像,视觉质量得到较大改善;并与其他多种增强算法相比,客观指标PSNR和SSIM得到了提高。
-
单位西安邮电大学; 通信与信息工程学院