摘要

为了维持良好的车辆生产和交通运输发展,有必要对车辆的非法改装以及超载超限行为进行有力的遏制,车辆外廓尺寸测量则是一种重要识别车辆非法改装的方法。通过提取车辆的激光点云数据,按一定的规则形成对应的点云鸟瞰图,运用深度学习中的卷积神经网络对点云鸟瞰图进行模型训练,使模型对车辆具有快速、准确的识别效果。识别得到的包围框通过坐标像素的转换可求得车辆的长、宽、高,达到车辆外廓尺寸的测量结果,并可转换为3D检测效果。通过试验表明,提出的基于激光点云3D检测的车辆外廓尺寸测量方法测量精度损失较小,检测效率高于传统测量方法。

全文