摘要
【目的】针对现有多模态讽刺检测模型中存在预测准确率不高、多模态特征难以融合等问题,设计一种SC-Attention融合机制。【方法】采用CLIP和RoBERTa模型分别提取图像、图像属性和文本三种模态特征,经由SENet的注意力机制和Co-Attention机制结合构成的SC-Attention机制将多模态特征进行融合,以原始模态特征为引导,合理分配特征权重,最后输入全连接层进行讽刺检测。【结果】实验结果表明,基于SC-Attention机制的多模态讽刺检测的准确率为93.71%,F1值为91.68%,与基准模型相比,准确率提升10.27个百分点,F1值提升11.50个百分点。【局限】模型的泛化性需要在更多数据集上体现出来。【结论】SCAttention机制减少信息冗余和特征损失,有效提高多模态讽刺检测的准确率。
- 单位