摘要
针对传统蚁群算法在大规模和复杂环境中,全局搜索效率差,收敛速度慢,路径转弯次数过多且不够平滑等问题,本文提出一种改进蚁群算法。该方法通过动态更新不同等级蚂蚁路径上的信息素,加快算法的收敛速度;通过引入距离函数和方向函数作为启发因子,改善路径搜索质量;采用一种改进自适应伪随机转移策略,减小陷入局部最优解的概率;在最优路径的基础上引入三次均匀B样条曲线进行优化,提高路径的平滑性。通过在2种不同规模环境下的路径规划实验表明,本文算法相比传统算法在分别减少55.6%和59.4%转弯次数的基础上,提升87.5%和100%的收敛速度,验证了本文算法的优越性。最后,以QBot2e为平台,将本算法应用到室内自动导引车(AGV)路径规划中,进一步验证了算法的实用性。
-
单位电子信息工程学院; 河北大学