摘要

针对不同扩展目标产生的量测密度差异较大时,多扩展目标高斯混合概率假设密度(ET-GM-PHD)量测集划分困难,计算量繁重的问题,提出了一种基于动态网格密度的SNN相似度的量测划分算法。首先利用动态网格技术对量测数据进行预处理,减小量测中的杂波干扰;而后采用共享最近邻(SNN)相似度对处理后的观测值进行量测划分。经过仿真结果分析,文中提出的算法相较于传统算法,减少了运行时间,提升了跟踪的稳定性。

全文