摘要

风电场的出力是一个受风速波动性和各种气象条件影响的复杂过程,风电功率预测的准确性可以大大提高电力系统调度运行的效率,维持发、输、用电之间功率的平衡。针对于此,对风电场进行功率预测时,建立了表征风电功率波动的平稳性指标,考虑到风电的波动性越小,预测精度就越高,引入了带精英策略的快速非支配排序遗传算法(NSGA-II),以此来求取各个风力发电机组的最优组合,使得组合后的风电出力更加平稳,波动更小,得到了一组pareto最优解集。然后对pareto解集中的所有组合的风力发电机组,利用BP神经网络进行功率预测,预测精度最高的解就是最优的组合。通过仿真验证,证明该方法的有效性和合理性。并将所得到的结果与经典的风电功率预测方法—小波预测和粒子群优化的BP神经网络(PSOBP)预测进行对比分析,证明了所提方法的优越性。