设n为正整数,F.Smarandache LCM函数SL(n)和函数SM(n)定义为:SL(1)=1,SM(1)=1,当n>1,并且n的标准分解式为n=p1α1p2α2…pkαk时,SL(n)=max1≤i≤k{pαi i},SM(n)=max1≤i≤k{αi.pi},利用初等方法及素数的分布性质研究函数(SL(n)-SM(n))2的均值性质,并给出了一个有趣的渐近公式。