摘要
在线教育的快速发展使得在线课程数量爆炸式增长,学习者很容易陷入“课程过载”带来的课程信息获取效率低下的问题,这推动了在线课程推荐系统的产生和发展。目前在线课程推荐系统已成为研究热点,并且在该领域中提出了大量方法,有必要对最新的研究进展进行系统的梳理分析。首先归纳总结在线课程推荐系统的基本框架和相关概念。然后重点对比分析现有在线课程推荐系统采用的各类核心推荐方法,其中包括基于关联规则挖掘、基于矩阵分解、基于概率模型、基于深度学习、基于智能优化、基于语义计算等类型的方法。最后介绍在线课程系统的各种评价指标和公开可用的数据集,并展望未来的发展方向。
- 单位