摘要

为了增加新闻推荐的辅助信息并提高预测精度,提出基于Transformer和知识图谱的新闻推荐方法.为了结合新闻语义信息和实体信息,利用自注意力机制获取新闻单词之间和新闻实体之间的联系,采用加法注意力机制捕捉单词和实体对新闻表示的影响.考虑到用户对新闻的偏好具有时序性特点,引入Transformer以捕捉用户点击新闻间的关联信息及用户兴趣随时间的变化情况.利用知识图谱中的高阶结构信息,融合候选新闻邻接实体,提升候选新闻嵌入向量所含信息的完整性.在2个版本的MIND新闻数据集上与5个典型推荐方法的对比实验表明,注意力机制、Transformer和知识图谱的引入提高了算法在新闻推荐方面的表现.