摘要

种子是农业生产最基本,最主要的生产资料。为实现玉米种子的快速鉴定识别与保护,本文提出基于卷积神经网络(Convolution Neural Network, CNN)与迁移学习相结合的玉米种子籽粒图像分类识别方法,可将预训练的CNN模型参数迁移到玉米籽粒图像分类识别任务中。实验采集了6种玉米种子籽粒图像双面图像共1976张,包括16DX531,京粘1号,科诺58,铁研,小金黄,郑单958,建立胚面,胚乳面和双面混合的3种数据集。按照7:2:1的比例随机划分训练集,验证集和测试集,并对训练集图像作数据增强处理。基于4种CNN模型Xception,ResNet50V2,MobileNetV2,DenseNet121进行参数迁移学习。实验结果表明Xception与胚乳数据集建模方法优于其他方法。Xception--胚乳模型训练集与验证集平均识别准确率分别为95.55%和95.97%,测试集准确率为92.78%。基于卷积神经网络与迁移学习相结合的玉米籽粒图像识别方法切实可行,为进一步研究奠定了基础。