摘要

目的 针对风机运行安全问题,建立风机叶片表面腐蚀速率预测模型,实现对风机叶片安全的预警。方法 对风机叶片腐蚀的原理进行分析,探讨复合材料的腐蚀机理,根据现场实测的数据对叶片表面腐蚀速率进行预测。针对海鸥算法(SOA)易陷入局部最优的问题提出了相应的改进方案,采用logistics混沌映射取代了随机选取海鸥初始位置的方式,提高海鸥初始位置的质量;在海鸥位置更新方式中引入了Levy飞行策略,使得海鸥算法有更强的全局搜索能力;采用Metropolis准则,使处于较差位置的海鸥个体也有一定概率被接受,以提高种群多样性。将改进的海鸥算法用于对核极限学习机(KELM)参数的寻优,建立ISOA-KELM风机叶片表面腐蚀速率预测模型。对该模型进行实验,并与SOA-KELM、PSO-KELM、GA-KELM进行预测误差对比。结果 使用ISOA优化KELM提升了KELM的预测精度,获得的平均绝对误差(MAE)为0.457、均方误差(MSE)为0.280、确定系数(R-square)为0.959,均优于SOA-KELM、PSO-KELM、GA-KELM对比模型。结论 用ISOA-KLEM模型建立的风机叶片表面腐蚀速率模型具有更高的预测精度,基于相关环境数据预测的腐蚀速率对风电场的维修计划具有良好的指导作用。

全文