摘要
本发明公开了一种基于深度学习的移动客户超细分方法,包括步骤:S1、对移动用户的基础数据和消费行为数据进行预处理;S2、针对消费行为特征,统计第一用户集(这类移动用户拥有大于或等于t个月的消费行为数据)中每个用户的该特征的t个月数据的平均值等作为该特征的统计特征;S3、将处理后的两类特征拼接,作为特征向量;S4、构建自动编码器,获得特征向量的低维向量表示;S5、构建层次聚类模型,进行层次聚类;S6、对于第二用户集(这类移动用户拥有小于t个月的消费行为数据),通过计算与聚类后各簇心的距离获得相应的细分类别。本发明可以对大规模移动客户数据实现快速细分,根据客户细分结果,可以针对性地进行套餐推荐等个性化服务。
-
单位中国移动通信集团广西有限公司; 华南理工大学