摘要

奶牛站立、喝水、行走、躺卧等日常行为与其生理健康密切相关,高效准确识别奶牛行为对及时掌握奶牛健康状况,提高养殖场经济效益具有重要意义。针对群体养殖环境下奶牛行为数据中,场景复杂、目标尺度变化大、奶牛行为多样等对行为识别造成的干扰,该研究提出一种改进YOLOV5s奶牛多尺度行为识别方法。该方法在骨干网络顶层引入基于通道的Transformer注意力机制使模型关注奶牛目标区域,同时增加路径聚合结构的支路与检测器获取奶牛行为图像的底层细节特征,并引入SE(Squeeze-and-Excitation Networks)注意力机制优化检测器,构建SEPH(SE Prediction Head)识别重要特征,提高奶牛多尺度行为识别能力。试验验证改进后的奶牛行为识别模型在无权重激增的同时,多尺度目标识别结果的平均精度均值较YOLOV5s提高1.2个百分点,尤其是对奶牛行走识别结果的平均精度4.9个百分点,研究结果为群体养殖环境下,全天实时监测奶牛行为提供参考。