摘要
局部放电类型的识别对准确掌握变压器绝缘状态和合理安排检修维护有着重要的指导意义。识别放电类型的关键在于放电特征的提取。针对目前局部放电特征识别稳定性差,识别率低的问题,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)和多尺度排列熵(Multi-scale permutation entropy,MPE)的特征提取方法,并验证了方法的有效性。利用VMD分解算法对实验室条件下采集的4种局部放电信号进行分解,得到数个包含不同频带信息的有限带宽的固有模态分量(band-limited intrinsic mode functions,BLIMFs),分别计算相应的多尺度排列熵,并将其组合成原始特征量。在此基础之上,利用最大相关最小冗余准则(max-relevance and min-redundancy criteria,mRMR)对原始特征量进行优选降维,最后使用支持向量机分类器实现分类。实验结果表明:在染噪情况下,该方法提取的多尺度排列熵仍能准确刻画不同的放电信号时频复杂度的差异,鲁棒性强,识别率高。
-
单位新能源电力系统国家重点实验室; 华北电力大学