摘要
沉降变形监测中,研究如何对监测的沉降数据进行处理,预测沉降量,对可能出现的安全隐患做出预判有着很重要的实际意义。本文基于神经网络模型、小波分析和奇异谱分析(singular spectrum analysis,SSA)的相关理论,构建起SSA-小波神经网络变形预测模型,并将模型应用于地铁工程沉降预测中。针对地铁监测数据非平稳性、非线性特征,首先,使用SSA方法提取数据序列中的趋势项与周期项,提高序列信噪比;其次,使用小波神经网络模型对趋势项与周期项分别进行预测与重构,得到最终的预测值。通过对地铁累计沉降量观测数据进行预测,结果表明相比单独的小波神经网络模型,SSA-小波神经网络模型的预测效果更佳稳定,且随着训练样本的增加,预测结果与实际情况更加符合。
-
单位中国电建集团北京勘测设计研究院有限公司