融合关联信息与CNN的实体识别研究

作者:李明键; 李卫军*; 王海荣
来源:郑州大学学报(理学版), 2023, 55(05): 53-59.
DOI:10.13705/j.issn.1671-6841.2022165

摘要

引入外部词汇是提升实体识别效果的有效方法,然而现有的方法未能对词汇的关联字符向量进行表征,从而忽略了字符之间的联系。基于此,提出一种融合关联信息与卷积神经网络(convolutional neural network, CNN)的实体识别方法。在使用SoftLexicon引入外部词汇的基础上,根据字符所对应的外部词汇发现关联字符并以词频方式进行归一,从而与字符、词汇向量融合以构建多特征信息来扩充字符特征表示,之后使用CNN与双向长短期记忆网络联合获取深层信息。在Resume、Weibo和CCKS2017数据集上进行实验,结果表明,相比SoftLexicon方法,所提方法能有效提升实体识别效果。

全文