本文考虑短期内需求不确定情况下同类型的产品的定价策略研究,引入高斯过程进行需求函数的学习,利用批量汤普森算法建立基于探索-利用的两阶段学习和决策过程的定价模型。在利用提出的GP-PTS算法完成数值实验和携程出行的真实数据应用后得出的结果表明:算法的精准度取决于特征是否完备,若给定一个先验且产品特征完备时,基于GP-PTS算法模拟出来的价格会取得比目前平台价格策略更好的收益,为企业在短期内进行定价决策提供了良好借鉴。