摘要

由于网络数据存在着异构特性,在网络攻击检测中,需要使用合理的方法对异构数据进行整合.我们在文章中提出了两级分段模型对异构数据进行整合并建模分析,同时讨论了模型在多核条件下的模型分布式并行训练.在实验部分,本文介绍了使用的DARPA 1998网络攻击数据集,并分析了不同分段方式下的攻击检测性能.同时,本文介绍说明模型在多核条件下的并行性能.结果显示,在面向异构数据时,两级分段模型相比于无分段的全连接神经网络模型有着更好的检测准确率和召回率.

全文