摘要

以往的人脸识别定位方法因受外界环境因素的干扰较大,存在定位误差较大的弊端。为实现高精度、高效率的人脸关键点识别定位,提出基于深度学习的人脸关键点识别定位方法。首先对深度学习方法中的深度信念网络进行全局训练,利用图像的LBP纹理特征得到人脸测试样本的关键点类标值,完成对人脸关键点的识别;设计人脸关键点定位的并行网络结构,结合并行卷积神经网络完成对人脸关键点的精准定位。仿真结果显示,上述方法在不同隐藏单元数、不同训练样本数情况下,对人脸关键点的识别精度和效率均较高;在不同样本数目的情况下,对人脸关键点的定位精度较高,可应用于人脸关键点识别定位工作中,具有很强的应用性。