摘要
高炉透气性指数反映了高炉内煤气流运动受到阻碍的大小,是操作人员判断高炉运行状态的重要依据.本文针对超限学习机的缺点,提出了基于核超限学习机的高炉透气性指数预测模型.首先选取了适当的高炉参数作为模型的输入.其次采用小波变换对生产数据降噪处理.然后建立基于核超限学习机的高炉透气性指数预测模型.在建模过程中,探索了不同的核函数对模型性能的影响,并对相关参数寻优.最后进行仿真实验,同其他算法对比.实验结果表明,相比于传统算法,基于核超限学习机的高炉透气性指数预测模型训练速度更快,预测精度更高,预测结果更稳定.
-
单位北京科技大学; 自动化学院