摘要
为了提升移动机器人视觉图像对比度、信息量以及整体质量,提出一种新的基于空洞U-Net神经网络的移动机器人视觉图像增强方法。在由编码器、解码器与跳层连接构成的U-Net网络中,引入残差网络与空洞卷积部分,构建空洞U-Net神经网络,以融合不同层次的像素特征块,并根据灰度等级与频数直方图,增强图像对比度。针对图像中待处理的像素点灰度值,利用其邻域像素点灰度值的中间值滤除图像噪声。根据像素向量场,利用梯度下降法锐化图像边缘,实现视觉图像增强。在实验阶段,选取部分样本训练空洞U-Net神经网络,获取最优网络参数,经测试验证所提方法的图像对比度、信息量以及整体质量上都有大幅提升,具有优越的视觉图像增强效果。
-
单位河南师范大学; 郑州工业应用技术学院