摘要

话题检测技术在传统媒体的研究中取得了较好的效果。探讨了针对微博类的新型媒体短文本对象话题检测技术的优化及性能评价。基于微博中联系人存在的关注和粉丝等结构化信息、帖子之间转发评论等内在关联关系,提出了针对微博的MB-SinglePass话题检测算法。该算法除了考虑微博上述特点之外,还针对短文本特征稀疏的问题,利用同义词典,引入了微博特征扩展技术,丰富了特征信息。同时,针对单一使用余弦相似度、雅各比相似度和语义相似度的不足,采用了组合相似度策略。相较传统算法,MB-SinglePass算法在新浪微博实测数据集上取得了更好的性能。另外,针对相似度策略的对照实验说明采用组合相似度的效果优于单一相似度。

  • 单位
    信息工程大学; 软件开发环境国家重点实验室