摘要

目前利用无人机获取光伏组件红外影像数据越来越多地应用于光伏组件故障检测中。但光伏组件红外影像数据各类别样本相似度较高,现有深度学习模型的光伏组件红外影像特征提取能力较低,导致光伏组件多故障类型分类精度偏低。针对以上问题,基于ResNet(residual network)模型构建ResPNet(residual photovoltaic network)模型进行光伏组件红外影像故障检测。ResPNet模型在ResNet模型基础上,加入了底层特征信息增强模块、多尺度特征信息增强模块、全局特征信息增强模块,用于提升模型的光伏组件红外影像特征提取能力。在公开的光伏组件红外影像数据集Infrared Solar Modules上进行实验,ResPNet模型的12类光伏组件红外影像分类精度达到84.6%,不但优于ResNet-50模型,而且优于其他的光伏组件红外影像分类模型。通过级联多个ResPNet模型,取得了该数据集目前已知最高的12类光伏组件红外影像分类检测精度(85.9%)。