摘要
在复杂交通环境中行驶的智能汽车需要预测未来周围车辆的动向,为了提升智能汽车快速且准确预测周围车辆驾驶行为及轨迹的能力,设计了一种基于BiGRU的多模态驾驶行为及轨迹预测模型.模型由BiGRU编码器、交互卷积池化层和GRU解码器组成,能够预测未来5 s车辆多模态驾驶行为的概率和多模态驾驶行为对应的轨迹分布.试验结果表明,相较于其他基于深度学习的模型,该模型在预测长时域轨迹时的RMSE损失和NLL损失更低,具备更高的准确率.
-
单位汽车仿真与控制国家重点实验室; 吉林大学