摘要
针对布匹生产企业存在人工检测布匹瑕疵效率低、误检率、漏检率高的问题,提出一种基于深度卷积神经网络的单色布匹瑕疵检测算法.首先由于布匹瑕疵的数据规模远小于大型深度卷积神经网络的数据规模,如果采用大型卷积神经网络,计算量大且容易导致过拟合,因此设计了浅层的卷积神经网络结构;然后提出双网络并行的模型训练方法,用一个大网络指导小网络的训练过程,提高模型的训练效果;最后为了使得深度卷积神经网络模型脱离GPU的限制,能够在普通电脑、移动设备、嵌入式设备中高速运行,且保证模型检测精度,提出结合特征图优化卷积核参数的模型压缩算法.实验结果表明该算法可实现高准确率、高检测速度,在PC机的CPU模式下,检测速度为135 m/min,准确率可达到96.99%.
-
单位厦门大学; 航天学院