摘要
针对滚动轴承实际工作中缺少某种负载数据,使得源领域数据与目标领域数据属于不同分布,以及目标领域样本不含标签的问题,提出一种多域特征构建和无监督特征对齐的滚动轴承故障诊断方法。该方法利用变分模态分解结合奇异值分解获取振动信号的时频特征,再结合振动信号时域、频域特征构建多域特征集;引入迁移学习中能够实现无监督领域适应的子空间对齐(subspace alignment,SA)算法并进行改进,提出将核映射方法与SA算法相结合。将训练数据和测试数据映射到相同高维空间,在高维空间的子空间进行特征对齐,以增加数据类间区分性,实现不同负载下源领域特征向目标领域特征对齐。实验研究表明,与部分降维方法及无监督迁移学习方法相比,所提方法在目标领域无标签的情况下,能够利用滚动轴承已知负载数据识别出其他负载数据对应的状态,并具有较高的故障诊断准确率。
-
单位电子工程学院; 哈尔滨理工大学