摘要
上帝类是指某个承担了本应由多个类分别承担的多个职责的类.上帝类违背了分而治之的基本思想以及单一职责的设计原则,严重影响软件的可维护性和可理解性.但上帝类又是一种比较常见的代码坏味.因此,针对上帝类的检测与重构一直是代码重构领域的研究热点之一.为此,提出了一种基于深度神经网络的上帝类检测方法.该方法不仅利用了常见的软件度量,而且充分利用了代码中的文本信息,意图通过挖掘文本语义揭示每个类所承担的主要角色.此外,为了解决有监督深度学习所需的海量标签数据,提出了一种基于开源代码构造标签数据的方法.最后,基于开源数据集对所提出的方法进行了实验验证.实验结果表明,这些方法优于现有的上帝类检测方法,尤其是在查全率上有大幅度的提升(提高了35.58%).
- 单位