摘要

为了提高智能汽车紧急变道轨迹规划的实时性和适应性,将紧急变道过程分为初始阶段和跟踪阶段,初始阶段的轨迹由优秀驾驶人紧急变道模型产生,跟踪阶段的轨迹采用Sigmoid函数规划出紧急避让路径。首先通过聚类分析处理优秀驾驶人转向操作的实车试验数据,拟合得出紧急变道过程中的方向盘转角随时间的关系(即驾驶人紧急变道模型),作为智能汽车在紧急变道初始阶段不同速度下车辆控制的输入量。然后通过建立与求解约束方程,满足避撞约束、侧向位移约束以及最大侧向加速度约束,得出Sigmoid函数表达式,作为智能汽车在紧急变道过程跟踪阶段的参考路径。最后利用hp自适应伪谱法加入切换点的物理量约束,逼近全局正交多项式的状态量和控制量,自动调整和处理2个阶段的切换点位置和衔接问题,以最小变道距离为目标对跟踪阶段的变道轨迹进行优化。运用PreScan与MATLAB对4种不同工况下的紧急变道轨迹规划进行联合仿真。结果表明:提出的轨迹规划与优化方法在满足各项约束的情况下成功避开障碍物,同时缩短了需要优化的轨迹,优化时间都小于0.9 s,并且与基于多项式函数轨迹规划方法相比,该方法能够以距障碍物较远的距离避开障碍物,在不同的车辆速度、道路曲率和障碍物宽度的复杂工况下具有更好的适应性。

全文