传统的人脸识别方法对图像质量要求较高,对含有噪声或复杂背景等真实世界的图像识别率较低,从而限制了人脸识别的应用.基于Alpha散度的NMF分解方法用于人脸识别,用Alpha散度作为距离度量标准,得到对应的NMF分解表达式,通过表达式中参数的取值可以衍生出多种分解迭代表达式,在每步迭代过程中计算差异度,进而确定下一步的最优参数,这样能保证分解收敛于全局最优,提高人脸识别的精度.